報 告 人:Songling Shan 博士
報告題目:The Core Conjecture of Hilton and Zhao and Beyond
報告時間:2020年12月18日(周五)晚上:9:00-10:00
報告地點:騰訊會議(會議 ID:972 762 316)
主辦單位:數學與統計學院、科學技術研究院
報告人簡介:
Songling Shan 博士于2014年畢業于Georgia State University, 獲理學博士學位,師從陳冠濤教授,主要研究方向是圖論及組合,具體包括圖的結構,圖染色及極值圖論。2015年至2018年在Vanderbilt University 做 Mark Ellingham 教授的博士后。現在是Illinois State University 助理教授。已在J. Graph Theory, SIAM J. Discrete Math., J.Combin. Theory Ser. B 等國際期刊發表學術論文20余篇。
報告摘要:
Let $G$ be a simple graph with maximum degree $\Delta$. We call $G$ \emph{overfull} if $|E(G)|>\Delta \lfloor |V(G)|/2\rfloor$. The \emph{core} of $G$, denoted $G_{\Delta}$, is the subgraph of $G$ induced by its vertices of degree $\Delta$. A classical result of Vizing shows that $\chi'(G)$, the chromatic index of $G$, is either $\Delta$ or $\Delta+1$. It is NP-complete to determine the chromatic index for a general graph. However, $\chi'(G)=\Delta+1$ if $G$ is overfull. Hilton and Zhao in 1996 conjectured that if $G$ is a simple connected graph with $\Delta\ge 3$ and $\Delta(G_\Delta)\le 2$, then $\chi'(G)=\Delta+1$ if and only if $G$ is overfull or $G=P^*$, where $P^*$ is obtained from the Petersen graph by deleting a vertex. The progress on the conjecture has been slow: it was only confirmed for $\Delta=3,4$, respectively, in 2003 and 2017. In this talk, we will take about the confirmation of this conjecture for all $\Delta\ge 4$ and the more general overfull graph conjecture.